

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 3463-3466

Tetrahedron Letters

Synthesis of 3-aryl-3-hydroxypyrrolidin-2-ones and 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2*H*-pyrrolo-[3,4-*c*]quinoline-1,4-dione derivatives from the Baylis–Hillman adducts of isatins

Seung Chan Kim, Saravanan Gowrisankar and Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

Received 13 February 2006; revised 27 February 2006; accepted 5 March 2006 Available online 31 March 2006

Abstract—We prepared some 3-aryl-3-hydroxypyrrolidin-2-ones and tricyclic 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyr-rolo[3,4-c]quinoline-1,4-diones starting from the Baylis–Hillman adducts of isatin derivatives. © 2006 Elsevier Ltd. All rights reserved.

Recently, synthesis of 3,4-disubstituted pyrrolidin-2-one derivatives has been investigated extensively^{1,2} in connection with the design of conformationally restricted analogs of bioactive amino acids² and with the usefulness as intermediates in the synthesis of bioactive nonproteinogenic amino acids.^{2f} Especially, the synthesis of 3-hydroxypyrrolidin-2-one derivatives received much attention, ^{1h,i,3,4a-c} which involved the trials of oxidation of chiral pyrrolidin-2-one³ or synthesis from the Baylis–Hillman adduct of α -keto esters.^{4a-c} A new tryptamine-related alkaloid, chimonamidine (1, Fig. 1), was isolated from the seeds of *Chimonanthus praecox Link* and the structure including absolute configuration was elucidated by spectroscopic analysis and biomimetic total synthesis from tryptamine.³ Recently, the structure

Figure 1.

of donaxaridine (2), an alkaloid isolated from *Arundo donax*, has been elucidated as having the same backbone with that of chimonamidine,^{5a} which was assigned before as the wrong structure (shown in parentheses).^{5b-d}

During the investigations on the chemical transformations of the Baylis–Hillman adducts,^{6,7} we envisioned that we could prepare the interesting 3-aryl-3-hydroxypyrrolidin-2-one derivatives. Thus, we thought an efficient synthetic route for the preparation of *ortho*-aminoaryl-substituted pyrrolidinone derivatives, which have similar backbone with those of the natural products, chimonamidine and donaxaridine (Scheme 1). If we used the Baylis–Hillman adducts of isatin,⁷ we could synthesize our desired compound easily via the Michael addition, condensation, and the following ring-opening sequences.

The synthesis of the Baylis–Hillman adducts of isatin **3** has been already published by us and other groups independently (Scheme 2).⁷ With the Baylis–Hillman adduct **3a** in our hand, we examined the reaction of **3a** and benzylamine.^{2,8} As expected, the reaction of benzylamine and **3a** in MeOH at room temperature gave a diastereomeric mixture of **4a**-syn and **4a**-anti in 57% and 31% yield, respectively (Scheme 2 and entry 1 in Table 1).⁹ Similarly, we could obtain **4b** and **4c** and the results are summarized in Table 1. In all cases, the *syn* isomers were obtained as the major products. The stereochemistry of **4b**-syn was confirmed by NOE experiments as shown in Figure 2.

Keywords: 3-Aryl-3-hydroxypyrrolidin-2-ones; Pyrrolo[3,4-*c*]quinolinones; Baylis–Hillman adducts; Isatins.

^{*}Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389; e-mail: kimjn@chonnam.ac.kr

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.074

Scheme 1. Synthetic approaches for chimonamidine analogs.

Scheme 2.

Table 1. The reaction of Baylis-Hillman adducts of acrylonitrile and benzylamine^a

^a Conditions: BnNH₂ (1.2 equiv), MeOH, rt.

However, the situation was different for the Baylis–Hillman adducts derived from methyl acrylate (Scheme 2 and Table 2). Indeed, when the Baylis–Hillman adduct **3d** was used as the starting material, low yield (2%) of

Figure 2. NOE results of 4b-syn and 6c.

expected 3-hydroxypyrrolidin-2-one derivative 5a-syn was obtained together with tricyclic 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinolone-1,4dione 6a (67%) as the major product (entry 1 in Table 2).^{10,11} Compound **6a** was formed in a one-pot reaction via the sequential Michael addition of benzylamine to the Baylis-Hillman adduct 3d, intramolecular cyclization and concomitant ring opening of lactam of isatin moiety,^{5b-d} and eventual formation of new lactam ring (Scheme 2). Similarly, we obtained **6b** from the reaction of 3d and p-methoxybenzylamine and 6c from 3e and benzylamine. The stereochemistry of compounds 6 was confirmed by NOE experiments having 6c as an example (Fig. 2). But the situation was different for 3f, which afforded a diastereomeric mixture of 5d. However, the relative geometry is inverted with respect to 3a-c, the *anti*-product being the major component of the reaction mixture. In this case, we could not find the formation of the corresponding tricyclic compound **6d**. The whole results are summarized in Table 2.

In summary, we disclosed the synthesis of 3-aryl-3hydroxypyrrolidin-2-ones and tricyclic 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2*H*-pyrrolo[3,4-*c*]quinoline-1,4-diones starting from the Baylis–Hillman adducts of isatin derivatives. The evaluation of biological activities and further chemical transformations of the synthesized compounds are currently underway.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2005-041-C00248). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

1. For the synthesis and biological activities of pyrrolidinone derivatives, see: (a) Choi, M. K.-W.; Yu, W.-Y.; Che, C.-M.

Table 2. The reaction of Baylis-Hillman adducts of methyl acrylate and benzylamines^a

^a Conditions: BnNH₂ (1.2 equiv), MeOH, rt.

^b4-Methoxybenzylamine was used instead of benzylamine (PMB is 4-methoxybenzyl).

Org. Lett. 2005, 7, 1081; (b) Yee, N. K.; Dong, Y.; Kapadia, S. R.; Song, J. J. J. Org. Chem. 2002, 67, 8688; (c) Kagoshima, H.; Okamura, T.; Akiyama, T. J. Am. Chem. Soc. 2001, 123, 7182; (d) Singh, V.; Saxena, R.; Batra, S. J. Org. Chem. 2005, 70, 353; (e) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707; (f) Elworthy, T. R.; Brill, E. R.; Chiou, S.-S.; Chu, F.; Harris, J. R.; Hendricks, R. T.; Huang, J.; Kim, W.; Lach, L. K.; Mirzadegan, T.; Yee, C.; Walker, K. A. M. J. Med. Chem. 2004, 47, 6124; (g) Bower, J. F.; Svenda, J.; Williams, A. J.; Charmant, J. P. H.; Lawrence, R. M.; Szeto, P.; Gallagher, T. Org. Lett. 2004, 6, 4727; (h) Puschl, A.; Boesen, T.; Zuccarello, G.; Dahl, O.; Pitsch, S.; Nielsen, P. E. J. Org. Chem. 2001, 66, 707; (i) Brabandt, W. V.; De Kimpe, N. J. Org. Chem. 2005, 70, 3369; (j) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; SanMartin, R. Org. Lett. 2005, 7, 3073; (k) Othman, R. B.; Bousquet, T.; Fousse, A.; Othman, M.; Dalla, V. Org. Lett. 2005, 7, 2825; (1) Taylor, E. C.; Liu, B. J. Org. Chem. 2001, 66, 3726.

- (a) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 1996, 7, 3573; (b) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1999, 55, 4029; (c) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1999, 55, 261; (d) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 1997, 8, 133; (e) Fava, C.; Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 2003, 14, 3697; (f) Galeazzi, R.; Martelli, G.; Mobbili, G.; Orena, M.; Rinaldi, S. Tetrahedron: Asymmetry 2003, 14, 3353; (g) Galeazzi, R.; Mobbili, G.; Orena, M. Tetrahedron 1996, 52, 1069; (h) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 1996, 7, 79.
- Synthesis of natural chimonamidine, Takayama, H.; Matsuda, Y.; Masubuchi, K.; Ishida, A.; Kitajima, M.; Aimi, N. *Tetrahedron* 2004, 60, 893.
- For the synthesis of Baylis–Hillman adducts of β-ketoesters and synthesis of pyrrolidinone derivatives, see: (a) Amri, H.; El Gaied, M. M.; Ben Ayed, T.; Villieras, J. *Tetrahedron Lett.* **1992**, *33*, 7345; (b) Galeazzi, R.; Martelli, G.; Mobbili, G.; Orena, M.; Rinaldi, S. *Tetrahedron: Asymmetry* **2004**, *15*, 3249; (c) Ben Ayed, T.; Amri, H.; El Gaied, M. M.; Villieras, J. *Tetrahedron* **1995**, *51*, 9633; (d) Beltaief, I.; Besbes, R.; Ben Amor, F.; Amri, H.; Villieras, M.; Villieras, J. *Tetrahedron* **1999**, *55*, 3949; (e) Basavaiah, D.; Sreenivasulu, B.; Rao, A. L. J. Org. Chem. **2003**, *68*, 5983.
- (a) Khuzhaev, V. U. Chem. Nat. Compd. 2004, 40, 516; (b) Khuzhaev, V. U.; Tashkhodzhaev, B.; Aripova, S. F. Khim. Prir. Soedin. 1995, 720; (c) Rasmussen, H. B.; MacLeod, J. K. J. Nat. Prod. 1997, 60, 1152; (d) Kawasaki, T.; Nagaoka, M.; Satoh, T.; Okamoto, A.; Ukon, R.; Ogawa, A. Tetrahedron 2004, 60, 3493.
- For leading references of our papers, see: (a) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481; (b) Lee, K. Y.; Lee, C. G.; Na, J. E.; Kim, J. N. Tetrahedron Lett. 2005, 46, 69; (c) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493; (d) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859; (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46, 5387; (f) Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799; (g) Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett. 2006, 47, 977; (h) Lee, M. J.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355, and references cited therein.

- For the synthesis of Baylis–Hillman adducts of isatin derivatives, see: (a) Chung, Y. M.; Im, Y. J.; Kim, J. N. *Bull. Korean Chem. Soc.* 2002, 23, 1651; (b) Garden, S. J.; Skakle, J. M. S. *Tetrahedron Lett.* 2002, 43, 1969.
- Addition of benzylamine to B-H adducts, Perlmutter, P.; Tabone, M. *Tetrahedron Lett.* 1988, 29, 949.
- 9. Compound 4a-syn: 57%; white solid, mp 225-226 °C (dec.); IR (KBr) 3433, 2249, 1697, 1620 cm⁻¹; ¹H NMR (CDCl₃ + three drops of DMSO- d_6 , 300 MHz) δ 3.25 (dd, J = 10.5 and 6.3 Hz, 1H), 3.45 (dd, J = 10.5 and 2.4 Hz, 1H), 3.88 (dd, J = 6.3 and 2.4 Hz, 1H), 4.53 (d, J = 14.7 Hz, 1H), 4.72 (d, J = 14.7 Hz, 1H), 4.76 (br s, 2H), 6.59 (t, J = 7.8 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 7.08 (s, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.28–7.40 (m, 5H); ¹³C NMR (CDCl₃ + three drops of DMSO-d₆, 75 MHz) & 34.58, 44.81, 45.74, 78.13, 116.19, 116.63, 117.01, 121.09, 125.48, 126.90, 127.05, 127.78, 128.63, 134.06, 145.27, 170.99; ESIMS m/z 308 (M^++H) . Anal. Calcd for $C_{18}H_{17}N_3O_2$: C, 70.34; H, 5.58; N, 13.67. Found: C, 70.27; H, 5.62; N, 13.55. Compound 4a-anti: 31%; white solid, mp 161-163 °C; IR (KBr) 3498, 3386, 3259, 2249, 1689, 1616 cm^{-1} ; ¹H NMR (CDCl₃, 300 MHz) δ 3.33 (dd, J = 9.6 and 7.8 Hz, 1H), 3.56 (dd, J = 9.6 and 8.1 Hz, 1H), 3.66 (dd, J = 8.1and 7.8 Hz, 1H), 4.55 (s, 2H), 4.65 (br s, 2H), 5.38 (br s, 1H), 6.63–6.72 (m, 2H), 6.81 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.24–7.27 (m, 2H), 7.33–7.41 (m, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 36.92, 45.65, 47.31, 81.51, 116.72, 118.34, 118.90, 120.21, 126.40, 128.35, 128.41, 129.11, 130.23, 134.36, 146.37, 172.38; ESIMS m/z 308 (M⁺+H). Anal. Calcd for C₁₈H₁₇N₃O₂: C, 70.34; H, 5.58; N, 13.67. Found: C, 70.31; H, 5.69; N, 13.46.
- For the synthesis and biological activity of pyrrolo[3,4c]quinolone derivatives, see: (a) Kravchenko, D. V.; Kuzovkova, Y. A.; Kysil, V. M.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Balakin, K. V.; Ivachtchenko, A. V. J. Med. Chem. 2005, 48, 3680; (b) Cappelli, A.; Anzini, M.; Vomero, S.; Mennuni, L.; Makovec, F.; Doucet, E.; Hamon, M.; Menziani, M. C.; De Benedetti, P. G.; Giorgi, G.; Ghelardini, C.; Collina, S. Bioorg. Med. Chem. 2002, 10, 779.
- 11. Compound **5a**-syn: 2%; IR (film) 3367, 1732, 1693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.18 (dd, J = 10.5 and 6.6 Hz, 1H), 3.43–3.47 (m, 1H), 3.71 (s, 3H), 3.73–3.75 (m, 1H), 4.66 (s, 2H), 6.63 (t, J = 7.5 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.84 (d, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.21–7.40 (m, 5H); ¹³C NMR (CDCl₃, 75 MHz), δ 45.52, 47.44, 47.48, 52.18, 80.42, 117.72, 117.81, 123.46, 125.96, 127.97, 128.56, 128.74, 129.69, 135.04, 145.80, 171.00, 172.80; ESIMS m/z 341 (M⁺+H). Compound 6a: 67%; white solid, mp 199-201 °C; IR (KBr) 3309, 3236, 3147, 1677 cm^{-1} ; ¹H NMR $(CDCl_3 + three drops of DMSO-d_6, 300 MHz) \delta 3.17$ (dd, J = 9.3 and 8.1 Hz, 1H), 3.28 (t, J = 8.1 Hz, 1H), 3.58 (dd, J = 9.3 and 8.1 Hz, 1H), 4.38 (d, J = 14.7 Hz, 1H),4.53 (d, J = 14.7 Hz, 1H), 6.13 (s, 1H), 6.94 (dd, J = 8.1and 1.2 Hz, 1H), 7.07-7.14 (m, 3H), 7.22-7.28 (m, 4H), 7.86 (dd, J = 7.8 and 1.5 Hz, 1H), 10.19 (br s, 1H); ¹³C NMR (CDCl₃ + three drops of DMSO- d_6 , 75 MHz) δ 44.54, 46.03, 46.81, 74.01, 115.06, 119.55, 122.46, 126.88, 126.97, 127.52, 127.92, 129.10, 134.77, 135.77, 167.41, 172.08; ESIMS m/z 309 (M⁺+H). Anal. Calcd for C₁₈H₁₆N₂O₃: C, 70.12; H, 5.23; N, 9.09. Found: C, 70.21; H, 5.32; N, 9.01.